An Assessment of Supercritical Hydrothermal Combustion (SCHC) for Organic Wastes Destruction

Author:

Li Yan Hui1,Wang Shu Zhong1,Qian Li Li1,Wen Sheng1

Affiliation:

1. Xi’an Jiaotong University

Abstract

The supercritical hydrothermal combustion (SCHC) accompanied by visible hydrothermal flame in supercritical water completely differs from conventional combustion, which represents more prominent comprehensive technical advantages in organic wastes destruction, comparing with wet-air oxidation, incineration and flameless SCWO. This paper reviews the existing SCHC reactors, which can be used for studying the ignition and extinction characteristics of various fuels, and also shows their effectiveness for the pollutant disposal and potential optimization directions. To date, the ignition and extinction temperatures of isopropyl alcohol, methanol and ethanol have been investigated broadly, however it is still necessary to further explore the ignition mechanism from micro perspective and build up proper ignition criterion models for hydrothermal flame. In addition, further research on the migration and conversion rules of various recalcitrant compounds such as phenol, ammonia, and so on during SCHC process is also of great significance.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference28 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3