Investigating the Void Content, Fiber Content, and Fiber Orientation of 3D Printed Recycled Carbon Fiber

Author:

Wang Peng Hao,Sterkenburg Ronald,Kim Garam,He Yu Wei

Abstract

Composite materials continue to grow in popularity within the aerospace industry as the preferred material for manufacturing large airframe structures. However, the popularity of composite materials has also led to the increase in composite waste. As the popularity of composite materials continues to grow, the proper management and recycling of these composite waste materials becomes increasingly crucial to the sustainability of the environment. In order to investigate potential recycling techniques for composite waste, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students teamed up to investigate the characteristics of 3D printed recycled carbon fiber. A prototype 3D printed recycled carbon fiber part was used for the study. Through the use of microscopy and ImageJ image analyzing software, the researchers were able to determine the void content, fiber volume fraction, and fiber orientation of the prototype 3D printed recycled carbon fiber part and identified potential improvements to the 3D printing process in order to improve the 3D printed part’s characteristics.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3