Investigation on Performance of Concrete Incorporating Silica Fume and Local UAE Materials

Author:

Sabouni Reem1,Abdulhameed Hassan Raad1

Affiliation:

1. Abu Dhabi University

Abstract

In an effort to reduce the amount of cement in the concrete industry and produce greener concrete, emphasis was put on using several industrial by-products such as silica fume, fly ash and slag as partial replacements for cement in concrete. Due to the enormous number of mega reinforced concrete projects constructed in the United Arab Emirates, it is considered to be one of the largest consumers of high strength concrete in the region. On the other hand, only limited research has been done on high strength concrete incorporating local materials in the UAE. The main objective of this research is to conduct an investigation on the performance of high strength concrete containing silica fume as partial replacement of ordinary Portland cement incorporating superplasticizers and local UAE materials by studying its mechanical properties and durability. The experimental program involved two groups: The first group had a water-to-binder material ratio (w/b) of 0.4, whereas, the second group had w/b = 0.3. For both groups the silica fume replacement percentages were 0 (control mix) 5, 7.5, 10, 12.5, and 15 percent. The mechanical properties were tested at 7, 28, and 91 days and the durability tests were performed at 28 days. The results were compared to the control mix and they showed that for all the curing ages studied the use of silica fume as partial replacement of OPC has favorable effect on the compressive strength values and the optimum replacement ratios of silica fume for the tested specimens are found to be at 12.5% and 10% replacement for the w/b ratios of 0.3 and 0.4, respectively. For all the four performed durability tests the replacement of the OPC with silica fume is found to have favorable results and the higher the silica fume percentage replacement of OPC the more favorable the results are. The detailed description of the used mixes and the main conclusions drawn from this research are presented in this paper

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3