Mechanical Properties of Ternary-Filled Natural Rubber Composites

Author:

Garing Clare L.1,Pajarito Bryan B.2

Affiliation:

1. University of the Philippines Los Baños

2. University of the Philippines

Abstract

The aim of this study was to investigate the effect of each ternary filler component: carbon black (CB), modified bentonite (M-BNT), and raw bentonite (BNT), and their interactions, on the mechanical properties of natural rubber (NR) composites, using a third degree-simplex lattice mixture design of experiment. The efficiency of the two-step organic modification to produce M-BNT was confirmed by the results of Fourier transform infrared with attenuated total reflectance (FTIR-ATR) spectroscopy and x-ray diffraction (XRD) analysis. Synergistic effect between CB and M-BNT on the mechanical properties of NR composites with ternary filler composition 10/5/0 was observed. Reinforcement of NR matrix using this ternary filler enhanced its tensile properties: strength (69.43%), modulus (47.01%), stress at 100% strain (34.67%), stress at 200% strain (41.88%), and stress at 300% strain (50.82%), as well as its compressive properties: strength (40.89%), modulus (40.05%), stress at 20% strain (41.10%), stress at 40% strain (37.57%), and stress at 60% strain (40.79%). Significant improvement in the mechanical properties was also attributed to the surface modification of M-BNT resulting to better dispersion to NR matrix. The addition of pure BNT filler resulted to lowest tensile and compressive performance due to high clay loading and incompatibility with NR matrix. Trends of the generated contour plots based on reduced hierarchical models demonstrated synergy between CB and M-BNT as well as deterioration of mechanical properties upon addition of pure BNT filler 0/0/15.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3