Influence of the Process Parameters on the Penetration Depth of the Reinforcing Phase during Composite Peening for the Production of Functionally Graded Metal Matrix Composites

Author:

Seitz Michael1,Weidenmann Kay André1

Affiliation:

1. Karlsruhe Institute of Technology (KIT)

Abstract

Composite peening describes a modified process based on micro shot peening. This process allows the controlled penetration of ceramic particles into areas of metallic matrix materials close to the surface layer. Composite material produced by composite peening promises a high application potential in the fields of lightweight, wear-resistant and durable materials. The use of ceramic reinforcing particles is expected to significantly improve thermal stability compared to conventional surface hardening processes. In addition, composite peening offers the possibility of cost-effectively reinforcing components and can even be applied subsequently in highly stressed surface layers. The material combination selected for this study was technically pure aluminum as model and matrix material and alumina as abrasive respectively reinforcement material. The influence on the particle density and the particle gradient was achieved by varying the process parameters, such as the process temperature and the peening pressure. A maximum penetration depth of almost 30 μm could be observed at high homologous temperatures. In light and scanning electron microscopy it was observed that the ceramic particles might break on impact with the surface of the blasting material. This causes a drastic reduction of the particle size, which initially had a size of 10 μm. This reduction of particle size promises advantages, particularly with cyclic loads.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3