Effect of Raw Materials on Properties of Coated Al2O3-Al Cermet Materials via Vacuum Sintering Method

Author:

Chen Ai Xia1,Yang Chao1,Wang Rui Hua1,Wang Fang1,Xu Ming Han1,Li Shi Bin1,Song Jie Guang2,Chen Lin2

Affiliation:

1. Jiujiang University

2. Pingxiang University

Abstract

In this paper, the effect of raw materaisl on the properties of coated Al2O3/Al cermet materials were investigated, the raw materials were prepared via different methods, which provide a reference for obtaining higher performance cermet materials. Through mixing, molding, sintering, sample preparation, scanning electron microscopic observation, energy spectrometer observation and analysis, the following conclusions can be drawn, the density of the cermet material prepared by the mechanical ball milling method (83.5%) is higher than that of the cermet material prepared by the chemical precipitation method (92.8%). It is nearly 10% lower. The alumina particles prepared by the ball milling method are agglomerated, and a large amount of agglomeration occurs in the aluminum, and the composition is very uneven. For materials prepared by the precipitation method, the aluminum oxide is uniformly distributed in the aluminum. The ball-milling powder is used to prepare materials, most of the alumina is in the form of particles, and in the precipitation method. In the powder preparation sample, the thin layer of alumina which forms the same eggshell envelops the aluminum, and the aluminum has a certain liquid phase change. the surface hardness (824HV) of the cermet material prepared by the mechanical ball milling method is lower than the surface hardness (1005HV) of the cermet material prepared by the chemical precipitation method.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3