Abstract
Systems of floor insulation on the ground, isolation of roads and shallow foundations suggest the use of heat-insulating products resistant to moisture, the minerals contained in it, having low heat conductivity and water absorption and relatively high strength for compressive loads.The aim of the research was to study the possibility of using mineral substances containing crystalline water as a dispersed component. Firstly, such compounds as a reinforcing component increase the strength characteristics of products. Secondly, being flame retardants, they contribute to increasing the fire safety of materials and building systems in which these materials are used. To achieve this goal, two particular tasks were set: determination of the optimal consumption of mineral modifying additives; assessment of exploitative stability of the received products. It was found that the introduction of a mineral modifying additive can significantly increase the compressive strength by 10% deformation of samples from extruded polystyrene foam. The exploitative stability of products with a mineral additive varies slightly and depends on its consumption and uniform distribution in the product matrix. The effect of additive consumption on the change in the thermal conductivity of products has not been established. A nomogram has been built which allows one to evaluate the properties of products and determine the optimal consumption of a modifying additive.Systems of using products from modified extruded polystyrene foam in monolithic foundations with insulation for buildings erected on problem soils are considered.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献