Prediction of the Tensile Strength and Electrical Resistivity of Concrete with Organic Polymer and their Influence on Carbonation Using Data Science and a Machine Learning Technique

Author:

Guzmán Torres José Alberto1,Domínguez Mota Francisco Javier1,Alonso-Guzmán Elia Mercedes1,Martínez-Molina Wilfrido1,Tinoco Ruiz José Gerardo1,Chavez-Garcia Hugo Luis1,Navarrete Seras Marco Antonio1,Arreola Sánchez Mauricio1

Affiliation:

1. UMSNH

Abstract

The inclusion of additions to concrete blends helps to improve performance in certain conditions. The analysis of two concrete blends was performed, a blend with the addition of a natural organic polymer and a control blend to make predictive models and find a correlation. Tree tests were performed: Electrical resistivity (Er) test, Tensile strength (Ft) and Carbonation resistance. One of the most popular non-destructive tests on concrete is , due to the simplicity of measuring readings on concrete elements. It is a non-destructive test that determines the interconnectivity that exists in the concrete cementitious matrix by determining the quality of the concrete. The blend with the addition showed improved performance in all the tests. Data science techniques were used to generate artificial data, the Machine Learning technique (ML) is based on Tree regression (Tr) with satisfactory accuracy to assess the reliability.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3