A Method for Characterization of Geometric Deviations in Clinch Points with Computed Tomography and Transient Dynamic Analysis

Author:

Köhler Daniel1,Sadeghian Behdad2,Kupfer Robert1,Troschitz Juliane1,Gude Maik1,Brosius Alexander2

Affiliation:

1. Technische Universität Dresden

2. Institute of Manufacturing Technology

Abstract

When joining lightweight parts of various materials, clinching is a cost efficient solution. In a production line, the quality of a clinch point is primarily controlled by measurement of dimensions, which are accessible from outside. However, methods such as visual testing and measuring the bottom thickness as well as the outer diameter are not able to deliver any information about the most significant geometrical characteristic of the clinch point, neck thickness and undercut. Furthermore, ex-situ destructive methods such as microsectioning cannot detect elastic deformations and cracks that close after unloading. In order to exceed the current limits, a new non-destructive in-situ testing method for the clinching process is necessary. This work proposes a concept to characterize clinch points in-situ by combining two complementary non-destructive methods, namely, computed tomography (CT) and ultrasonic testing. Firstly, clinch points with different geometrical characteristics are analysed experimentally using ex-situ CT to get a highly spatially resolved 3D-image of the object. In this context, highly X-ray attenuating materials enhancing the visibility of the sheet-sheet interface are investigated. Secondly, the test specimens are modelled using finite element method (FEM) and a transient dynamic analysis (TDA) is conducted to study the effect of the geometrical differences on the deformation energy and to qualify the TDA as a fast in-situ non-destructive method for characterizing clinch points at high temporal resolution.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3