Microtexture Control of Alumina Using Anisotropic Alumina Particles

Author:

Hashimoto Shinobu1,Yoshitaka Nishimura1,Hirofumi Hirano2,Sawao Honda1,Iwamoto Yuji1

Affiliation:

1. Nagoya Institute of Technology

2. Towa Refractory Engineering, Co. Ltd.

Abstract

A dense alumina body with anisotropic grains was fabricated from anisotropic particles (platelets) after heating at 1650°C for 15 min under applying pressure of 60 MPa using a PECS technique. When the alumina was cut on the vertical plane to the load direction while sintering, the breakdown voltage was 15 KV/mm and thermal conductivity was 36 W/mK. On the other hand, a porous alumina body was also synthesized from alumina platelets. The uniaxial pressure in fabricating the green compact body had an influence on the relative density of the alumina body after heating. The relative density and compressive strength of the compact that was uniaxially pressed at 1 MPa were 75 %, respectively. In addition, the relative density and compressive strength of compact that was uniaxially pressed at 3 MPa were 64 %, respectively. The thermal conductivity of the porous alumina with 64% in porosity was 0.8 W/Km.

Publisher

Trans Tech Publications Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3