Ceramic Membranes in Carbon Dioxide Capture: Applications and Potentialities

Author:

Drioli Enrico1,Brunetti Adele1,Barbieri Giuseppe1ORCID

Affiliation:

1. The University of Calabria

Abstract

Today, CO2 capture from e.g. flue gas has becoming an emerging opportunity for membrane gas separation. The flue gas coming out from power plants contains about 10-15% CO2, which should be separated before its sequestration. The most used membranes for this application are polymeric but they cannot be used at a high temperature. The flue gas exits at ca. 200°C, depending on the specific locations in the plant and, thus, it is highly desirable to separate it at high temperature. An alternative class to polymeric membranes is represented by the ceramic one which comprises zeolites, carbons, silica, perovskites membranes, that exhibit high fluxes and thermal resistance. However, a great challenge is to fabricate them as thin layers, avoiding formation of cracks that compromise the separation. Today, new solutions are in progress for the production of ceramic membrane able to overcome these limitations. For example, hybrid membranes able to combine the properties of different materials are proposed. Moreover, new works are done on mixed-matrix membranes, comprising of a molecular sieve guest phase dispersed in a polymer host matrix [3] which combines the advantage offered by the two materials. This work proposes an overview on the main applications of ceramic membranes in CO2 capture processes.

Publisher

Trans Tech Publications Ltd

Reference63 articles.

1. Ciferno J.P., Fout T. E., Jones A. P., Murphy J.T., Chemical Engineering Progress, April 2009, p.33.

2. Davidson O., Metz B., International Panel on Climate Change, Geneva, Switzerland, (2005). www. ipcc. ch.

3. Favre E., Journal of Membrane Science, 294, (2007), p.50.

4. Sridhar S., Smitha B., Aminabhavi T. M., Separation & Purification Reviews, 36, (2007), p.113.

5. Cuffe L., MacElroy J.M., Tacke M., Kozachok M., Mooney D.A., Journal of Membrane Science, 272, (2006), p.6.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3