Experimental and Numerical Investigation into Mixing Efficiency of Micromixers with Different Geometric Barriers

Author:

Lee Chia Yen1,Lin Chiufeng2,Hung M.F.,Ma R.H.,Tsai Chien Hsiung2,Lin Che Hsin3,Fu Lung Ming2

Affiliation:

1. Da-Yeh University

2. National Pingtung University of Science and Technology

3. National Sun Yat-Sen University

Abstract

This paper proposes a numerical and experimental investigation of mixing behaviors of two liquid samples in microchannels that are shaped into different geometric barriers. The micro-mixers utilized in this study are fabricated on low-cost glass slides using a simple and reliable fabrication process. Samples are driven by a hydrodynamic pump to lead them into the mixing section of the microchannels. The effects of mixing performance of various kinds of barrier shape are discussed in this study. The numerical and experimental results show that a better mixing efficiency can be obtained in the microchannels while using the elliptic-shape barriers in compare with the leaking side-channels. In this study, the simulated and experimental results are in good agreement. The investigation of mixing efficiency in microchannels with different geometric barriers could be crucial for microfluidic systems.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3