Strain Glass: Glassy Martensite

Author:

Wang Yu1,Ren Xiao Bing2,Otsuka Kazuhiro3

Affiliation:

1. National Institute for Materials Science

2. National Institute for Material Science

3. National Institute for Materials Science (NIMS)

Abstract

“Glass”, a frozen disordered-state, has been found in areas as diverse as amorphous solids, magnetic alloys, ferroelectrics, superconductors, and even in models of biological evolutions. In the present review we introduce a new class of glass–the “strain-glass”, which was discovered very recently. Strain glass is derived from a martensitic system, where the local-strain is frozen in disordered configuration. The first example of strain glass was found in the well-studied Ni-rich Ti50-xNi50+x martensitic system in its “non-transforming” composition regime (x>1.5). Contrasting to the familiar martensitic transition, the strain glass transition is not accompanied by a change in the average structure, or a thermal peak in the DSC measurement. It involves a dynamic freezing process with broken ergodicity, during which nano-sized martensite domains are frozen. More interestingly, the seemingly “non-martensitic” strain glass exhibits unexpected properties: shape memory effect and superelasticity, like a normal martensitic alloy. Strain glass bears a striking similarity with other two classes of glasses: cluster-spin glass and ferroelectric relaxor. These ferroic-transition-derived glasses can be considered as a more general class of glass: ferroic glass. The finding of strain glass may provide new opportunities for martensite research from both fundamental side and application side.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3