Microstructure and Mechanical Property of Nano-Duplex Materials Produced by HRS Process

Author:

Fujiwara Hiroshi1,Akada Ryota,Yoshita Yuki,Ameyama Kei1

Affiliation:

1. Ritsumeikan University

Abstract

An SUS316L and a Ti-6Al-4V alloy powders are treated by Mechanical Milling (MM) process, which is one of SPD processes, and then sintered by Hot Roll Sintering (HRS) process. The HRS process consolidates powder by hot rolling of an evacuated metal pipe filled with the powder at elevated temperatures. Those MM powders have a heavy deformed microstructure at the surface region and have a work hardened microstructure in the core region of the powder. In the surface region, a nano grain structure forms after the MM treatment in both materials. In case of the SUS316L powder, such a nano grain structure consists of an equiaxed nano ferrite (􀁄) grains which has transformed from nano austenite (􀁊) grains. Volume fraction of the 􀁄 phase decreases with distance from the surface of powder. During HRS the (􀁄 + 􀁊) nano-duplex structure changes to (sigma (􀁖) + 􀁊) nano-duplex structure by transformation of the 􀁄 to the 􀁖 phase. Thus, the SUS316L HRS material consists of a hybrid structure. That is, a (􀁖 + 􀁊) nano-duplex structure at the powder shell region, and a work hardened 􀁊 structure in the powder core region. In case of the Ti-6Al-4V MM powder, though no remarkable transformation occurs, a heavy deformed shell and work hardened core hybrid structure is also produced in the powder. By HRS the Ti-6Al-4V MM powder demonstrates a hybrid structure consists of an equiaxed nano grain structure and a coarse martensite structure. These two HRS materials indicate superior mechanical properties. Mechanical properties are improved by the HRS process. The proof stress and tensile strength in the SUS316L HRS material are x3.8 and x2.1 of the SUS316L conventional material, respectively. In the Ti-6Al-4V HRS material, they are x1.7 and x1.5 compared to the Ti-6Al-4V conventional material.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3