Optimum Design, Microstructure and Mechanical Properties of Ti/Ti3Al Multi-Layered Materials

Author:

Ma Li1,He Xiao Dong1,Hu Zhao Hui2,Sun Yue1

Affiliation:

1. Harbin Institute of Technology

2. Beijing Composite Materials Co.,Ltd.

Abstract

This study concerned with the optimum design, microstructure and mechanical properties analysis of a multi-layered metal/intermetallic materials consisting of Ti and Ti3Al prepared by the electron beam physical vapor deposition (EB-PVD) technology. Based on fracture mechanics and numerical simulation method, the optimized microstructure of Ti-Ti3Al multi-layered materials has been obtained by analyzing the relation curve between structural parameters and work of fracture of materials, then dual-target evaporating method was used to evaporate Ti and Ti-47Al bar alternately to form Ti/Ti3Al thin sheet about 0.12mm thickness. Pattern and phase analysis by SEM and XRD showed that there was homogeneous and continuous interface between layers and the intermetallic layers were made up of α2 phase alloy. The tensile curve of Ti/Ti3Al microlaminates represented the characteristic of multi-layered materials and the maximal extensibility of sample as deposited reached 5.83% and the fracture appearance showed ductile rupture feature.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3