Process of the One-Dimensional Motion of Small Interstitial-Type Dislocation Loops in Iron

Author:

Arakawa K.1,Mori Hirotaro1

Affiliation:

1. Osaka University

Abstract

Extensive simulations based on classical molecular dynamics have shown that small interstitial-type perfect dislocation loops in various metals and alloys have the structure of bundles of crowdions and a loop can easily makes the one-dimensional glide motion due to almost independent motion of crowdions in the loop. However, the experimental knowledge on the motion of loops is not enough. The present study dynamically examined the motion process of loops in pure iron under 1000 keV electron irradiation and thermal annealing by using transmission electron microscopy under which loops could move. Two types of loops were formed by irradiation. Loops of one type possessed the Burgers vector of 1/2<111> and the habit plane of {011}, and loops of the other type were <001> {001}. Loops of the former type made back-andforth glide motion and expansion towards the direction along their Burgers vectors when they were smaller than about a few-ten nanometers in diameter. This strongly suggests that these small 1/2<111> loops have the structure of the bundle of crowdions. Loops of the latter type only rarely moved less frequently when they were smaller than about the same size. When loops of two types grew larger than about 50 nm, the characteristics of the motion of loops changed drastically. Dislocation segments of each large loop made long-distance glide independently of their opposite segments, and the habit plane deviated from the original ones. This kind of motion means that selfinterstitial atoms at the central region of such large loops are no longer the crowdions.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3