Microstructure Evolution in Fine-Grained Microalloyed Steels

Author:

Lottey K.R.1,Militzer Matthias1

Affiliation:

1. University of British Columbia

Abstract

There is an increasing emphasis to develop novel hot-rolled high strength steels with fine and ultra fine grain sizes for structural and other applications. Traditionally the concept of microalloying has been employed to refine microstructures thereby obtaining increased strength levels. For example, employing an alloying strategy with Nb, Ti and Mo is promising to attain yield strength levels of 700MPa and beyond. In the present study, the transformation behaviour is investigated for a HSLA steel containing 0.05wt%C-1.65wt%Mn-0.20wt%Mo-0.07wt%Nb- 0.02wt%Ti. The ferrite formation from work-hardened austenite has been studied for simulated run-out table cooling conditions employing a Gleeble 3500 thermomechanical simulator equipped with a dilatometer. The effects of cooling rate and initial austenite microstructure, i.e. austenite grain size and degree of work hardening, on the austenite decomposition kinetics and resulting ferrite grain size have been quantified. Based on the experimental results, a phenomenological transformation and ferrite grain size model is proposed for run-out table cooling conditions. The transformation model includes submodels for transformation start and ferrite growth. The latter is described using a Johnson-Mehl-Avrami-Kolmogorov approach. The degree of work hardening is incorporated by introducing an effective austenite grain size as a function of the strain applied under no-recrystallization condition. The ferrite grain size can be predicted as a function of the transformation start temperature. Increasing both cooling rate and amount of work hardening can optimize ferrite grain refinement. In the present steel, ferrite grain sizes of as low as 2µm have been obtained in this way. The results observed for the present steel are compared to the transformation behaviour in previously studied Nb-Ti HSLA steels of similar strength levels.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference12 articles.

1. L.E. Collins: in Materials for Resource Recovery and Transport (Met. Soc. of CIM, Canada 1998), p.251.

2. M. Umemoto, Z.H. Guo and I. Tamura: Mat. Sci. Techn. Vol. 3 (1987), p.249.

3. P.D. Hodgson and R.K. Gibbs: ISIJ International Vol. 32 (1992), p.1329.

4. M. Militzer, B. Hawbolt and R. Meadowcroft: Metall. Mater. Trans. Vol. 31A (2000), p.1247.

5. R. Lottey and M. Militzer: in Ultra-fine Structured Steel (Met. Soc. of CIM, Canada, 2004), p.87.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3