Thermal Stability of Rapidly Solidified Alloys of Aluminium with Transition Metals

Author:

Vojtěch Dalibor1,Verner Jan1,Bártová Barbora2,Saksl Karel3

Affiliation:

1. Institute of Chemical Technology of Prague

2. Academy of Sciences of Czech Republic

3. Deutsches Elektronen-Synchrotron DESY

Abstract

Rapidly solidified (RS) Al-TM (TM = transition metal) alloys are perspective materials from scientific, as well as technological point of view. Generally, they are produced by the melt atomization or by the melt spinning. Subsequent compaction is commonly performed by the hot extrusion. Since transition metals, such as Cr, Fe, Ni, Zr, Ti, Mn and others, have low diffusion coefficients in solid aluminium (lower by several orders of magnitude than those of common alloying elements like Cu, Si, Mg, Zn etc.) the RS Al-TM alloys are characterized by a high thermal stability. In this paper, several RS Al-TM (TM = Cr, Fe, Ti, Mn, Ni) alloys prepared by the melt spinning and melt atomization are compared to commercially available 2xxx, 6xxx and 7xxx wrought alloys. The main structural features of both RS and wrought alloys are described. The RS alloys are characterized by the presence of micro and nano-scale crystalline and/or quasi-crystalline phases and supersaturated solid solutions. The elevated-temperature behaviour is compared for both groups of materials. The thermal stability of the investigated materials is determined by room temperature hardness measurements after various annealing regimes and a high thermal stability of the RS alloys is demonstrated. The microstructural changes and phase transformations occurring in the investigated materials upon heating are described. In the Al-TM alloys, very slow decomposition of the supersaturated solid solutions, precipitation and decomposition of the metastable quasi-crystalline phases occur.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference5 articles.

1. Dobatkin V. I.: Granulirujemije aluminijevije splavy (Metalurgija, Moskva, 1981).

2. Inoue A., Kimura H.: J. Light Met. 1 (2001), p.31.

3. Inoue A., Kimura H.: Mat. Sci. Eng. A 286 (2000), p.1.

4. Prakash U., Raghu A., Gokhale A. A., Kamat S. V.: J. Mater. Sci. 34 (1999), p.5061.

5. N. Saunders: Proc. of the 9 th. Int. Conf. on Aluminium Alloys, Brisbane, Australia (2004), p.223.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3