A Multi-Mechanistic Model for Precipitation Strengthening in Al-Cu-Mg Alloys during Non-Isothermal Heat Treatments

Author:

Khan I.N.1,Starink Marco J.1

Affiliation:

1. University of Southampton

Abstract

A multi-mechanistic model for microstructure development and strengthening during nonisothermal treatment of precipitation strengthened Al-Cu-Mg based alloys is derived. The formation kinetics of the precipitates is modelled using the Kampmann and Wagner numerical model that accounts for complete transformation from the nucleation to the coarsening stages. The increase in critical resolved shear strength of the grains due to the precipitates is based on two mechanisms i.e. the modulus strengthening mechanism for the shearable Cu:Mg co-clusters and the Orowan strengthening mechanism for the non-shearable S phase precipitates. The contributions due to solute and dislocation strengthening are also included in the strength calculations. The model is verified by comparing the predicted results with differential scanning calorimetery and hardness data on 2024 aluminium alloys. The microstructural development and strength/hardness predictions of the model are in reasonable agreement with the experimental data and the differences are discussed in terms of requirements for further model development.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3