A Review of Haynes® 230® and 617 Alloys for High Temperature Gas Cooled Reactors

Author:

Katcher Michael1,Klarstrom Dwaine L.1

Affiliation:

1. Haynes International, Inc

Abstract

HAYNES® 230® and 617 alloys are competing for use on Generation IV, high temperature gas cooled reactor components because of good high temperature creep strength in the temperature range between 760°C and 982°C and resistance to oxidation in the gas cooled reactor environment. A review of the metallurgy affecting the properties in each alloy will be discussed. Grain size and carbide precipitation developed during fabrication effect short term and long term ductility, fatigue, and creep. For example, 230 alloy has a finer grained structure which promotes fatigue strength with a slight sacrifice in creep strength. The 617 alloy has a coarser grain structure which provides slightly higher creep resistance while sacrificing some fatigue strength. Thermal aging also introduces gamma prime precipitation to the 617 alloy as well as grain boundary carbides, and this, in addition to grain boundary oxidation, reduces the low cycle fatigue strength of 617 alloy compared to 230 alloy. Independent studies have shown that 230 alloy possesses higher resistance to thermal fatigue than 617 alloy. However, welds of both base metals with similar weld composition have about the same thermal fatigue life. Cooling rates from solution annealing temperatures during processing effect the ductility and creep strength of these alloys with the highest cooling rates preferred for retention of ductility and creep strength. The reason; slow cooling rates promote carbide precipitation in the grain boundaries which reduces ductility and creep strength.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3