Microstructure Characterization and Modeling of Splat Formation during Air Plasma Spraying for Inconel 625 Superalloy

Author:

Azarmi F.1,Moradian A.1,Mostaghimi J.1,Coyle Tom W.1,Pershin L.1

Affiliation:

1. University of Toronto

Abstract

There is a growing interest in use of the nickel-based alloy Inconel 625 coatings due to its ability to improve base materials high temperature properties. Thermal spraying methods such as Air Plasma Spraying (APS) can be considered as a convenient method to deposit this material. The present work deals with APS deposited Inconel 625 structures consisting of huge number of individual splats formed by impacting molten droplets on substrates during spraying process. It is clear that the splat formation mechanism which dominates its size, cohesion, and boundaries highly influences the microstructure of the coating. This paper presents a developed numerical technique performed to simulate splat formation using a three dimensional model. In this method flow field is solved by Finite Volume Method (FVM) and free surfaces are determined from Youngs’ Volume of Fraction method (VOF). Finally, the model prediction is correlated with the actual splat geometries.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3