Multifunctional Ti-Si-B-C-N Tribological Nanocomposite Coatings for Aerospace Applications

Author:

Park In Wook1,Mishra Brajendra1,Kim Kwang Ho2,Moore John J.1

Affiliation:

1. Colorado School of Mines

2. Pusan National University

Abstract

Ti–B–C–N and Ti–Si–B–C–N nanocomposite coatings were deposited on AISI 304 stainless steel substrates by DC unbalanced magnetron sputtering from two (80mol% TiB2–20mol% TiC and 40mol% TiB2–60mol% TiC) composite targets in various Si target powers. The relationship among microstructures, mechanical properties, and tribologiacal properties was investigated. The synthesized Ti–B–C–N and Ti–Si–B–C–N coatings were characterized using x–ray diffraction (XRD) and x–ray photoelectron spectroscopy (XPS). These analyses revealed that the Ti–Si–B–C–N coatings are nanocomposites consisting of solid-solution (Ti,C,N)B2 and Ti(C,N) crystallites distributed in an amorphous TiSi2, SiC, and SiB4 matrix including some carbon, BN, CNx, TiO2, and B2O3 components. The addition of Si to the Ti–B–C–N coating led to percolation of amorphous TiSi2, SiC, and SiB4 phases. The Ti–Si–B–C–N coatings exhibited high hardness and H/E values, indicating high fracture toughness, of approximately 35 GPa and 0.098, respectively. Furthermore, the Ti–Si–B–C–N coatings exhibited very low wear rates ranging from ~3×10-7 to ~16×10-7 mm3/(N·m). The minimum friction coefficient of the Ti–Si–B–C–N coatings was approximately 0.15 at low Si target power between 25W and 50W. A systematic investigation on the microstructures, mechanical properties, and tribological properties of Ti–Si–B–C–N coatings prepared from two TiB2–TiC composite targets and one Si target is reported in this paper.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3