Effect of Dislocation Distribution on the Yielding of Highly Dislocated Iron

Author:

Takaki Setsuo1,Fujimura Y.2,Nakashima Koichi1,Tsuchiyama Toshihiro1

Affiliation:

1. Kyushu University

2. Nisshin Steel Corporation Ltd.

Abstract

Yield strength of highly dislocated metals is known to be directly proportional to the square root of dislocation density (ρ), so called Bailey-Hirsch relationship. In general, the microstructure of heavily cold worked iron is characterized by cellar tangled dislocations. On the other hand, the dislocation substructure of martensite is characterized by randomly distributed dislocations although it has almost same or higher dislocation density in comparison with heavily cold worked iron. In this paper, yielding behavior of ultra low carbon martensite (Fe-18%Ni alloy) was discussed in connection with microstructural change during cold working. Originally, the elastic proportional limit and 0.2% proof stress is low in as-quenched martensite in spite of its high dislocation density. Small amount of cold rolling results in the decrease of dislocation density from 6.8x1015/m-2 to 3.4x1015/m-2 but both the elastic proportional limit and 0.2% proof stress are markedly increased by contraries. 0.2% proof stress of cold-rolled martensite could be plotted on the extended line of the Bailey-Hirsch equation obtained in cold-rolled iron. It was also confirmed that small amount of cold rolling causes a clear microstructural change from randomly distributed dislocations to cellar tangled dislocations. Martensite contains two types of dislocations; statistically stored dislocation (SS-dislocation) and geometrically necessary dislocation (GN-dislocation). In the early deformation stage, SS-dislocations easily disappear through the dislocation interaction and movement to grain boundaries or surface. This process produces a plastic strain and lowers the elastic proportional limit and 0.2% proof stress in the ultra low carbon martensite.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3