Continuous Recrystallization Phenomenon in High Purity Copper during Equal Channel Angular Pressing up to High Strain at Room Temperature

Author:

Wang Jing Tao1,Zhang Yue1,Liu Jin Qiang1

Affiliation:

1. Nanjing University of Science and Technology

Abstract

Equal channel angular pressing (ECAP) was conducted at room temperature to a high strain level of ~24 in high purity copper. Tensile testing, Transition Electron Microscopy (TEM) and Electron backscatter diffraction (EBSD) were used to characterize the microstructure and property evolution with the increase of ECAP strain. It was found that tensile yield strength and the stored energy increases upon ECAP processing until a peak reached at 8~12 passes of ECAP, and their saturation was observed at higher ECAP passes. Continuous recrystallization phenomenon in microstructure was observed, where dislocation free crystallites with large misorientation to their surrounding matrix and smaller than the nuclei for discontinuous recrystallization were observed embodied in the matrix of deformed structure with high dislocation density. A two-step process was observed for the formation of these small crystallites, first the condensing of dislocation tangles into a narrow boundary, mostly low angle boundary; And second local migration (in sub-micrometer range) of short grain boundaries, in strong contrast to the dramatic migration of long large angle grain boundaries during discontinuous recrystallization to swallow the deformed matrix, was observed leading to vanish of small subgrains.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3