Self-Propagating High-Temperature Synthesis for Aluminum Oxynitride (AlON)

Author:

Lee Jae Ryeong1,Lee Ikkyu1,Chung Hun Saeng1,Ahn Jong Gwan2,Kim Dong Jin1,Kim Byoung Gyu1

Affiliation:

1. Korea Institute of Geoscience and Mineral Resources

2. Korea Institute of Geoscience and Mineral Resources (KIGAM)

Abstract

As the result of combustion reaction in Al-Al2O3-N2 system, AlON phase can be synthesized in the range of initial nitrogen pressure, from 1 to 5 MPa. On the occasion of rm = 0.3, the unreacted Al was detected in the case of 1 MPa of PN2. Its intensity decreases with an increase of nitrogen pressure. Ultimately, no peak of Al was observed in the product at nitrogen pressure of 5 MPa. In addition, the peak intensity of AlON in the products increases proportionally with the nitrogen pressure, while the intensities of AlN and Al2O3 decrease slightly with an increase of nitrogen pressure. The formation of AlON may be induced by successive two reactions. The former is the formation of AlN, and the latter is the reaction between AlN and Al2O3 in the after-burning period sustaining high temperature.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3