Techniques for Minimizing the Basal Plane Dislocation Density in SiC Epilayers to Reduce Vf Drift in SiC Bipolar Power Devices

Author:

Sumakeris Joseph J.1,Bergman Peder2,Das Mrinal K.3,Hallin Christer2,Hull Brett A.4,Janzén Erik2,Lendenmann H.5,O'Loughlin Michael J.6,Paisley Michael J.3,Ha Seo Young7,Skowronski Marek7,Palmour John W.6,Carter Jr. Calvin H.3

Affiliation:

1. Cree Research, Inc.

2. Linköping University

3. Cree Incorporation

4. Cree, Inc.

5. ABB Corporate Research

6. Cree, Incorporation

7. Carnegie Mellon University

Abstract

Forward voltage instability, or Vf drift, has confounded high voltage SiC device makers for the last several years. The SiC community has recognized that the root cause of Vf drift in bipolar SiC devices is the expansion of basal plane dislocations (BPDs) into Shockley Stacking Faults (SFs) within device regions that experience conductivity modulation. In this presentation, we detail relatively simple procedures that reduce the density of Vf drift inducing BPDs in epilayers to <10 cm-2 and permit the fabrication of bipolar SiC devices with very good Vf stability. The first low BPD technique employs a selective etch of the substrate prior to epilayer growth to create a near on-axis surface where BPDs intersect the substrate surface. The second low BPD technique employs lithographic and dry etch patterning of the substrate prior to epilayer growth. Both processes impede the propagation of BPDs into epilayers by preferentially converting BPDs into threading edge dislocations (TEDs) during the initial stages of epilayer growth. With these techniques, we routinely achieve Vf stability yields of up to 90% in devices with active areas from 0.006 to 1 cm2, implying that the utility of the processes is not limited by device size.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference11 articles.

1. Y. Goldberg, M.E. Levinshtein and S.L. Rumyantsev: Properties of Advanced Semiconductor Materials GaN, AlN, SiC, BN, SiC, SiGe (2001), pp.93-148.

2. A.M. Strelchuk, A.A. Lebedev, D.V. Davydov, N.S. Savkina, A.N. Kuznetsov, M. Ya. Valakh, V.S. Kiselev, B.N. Romanyuk, C. Raynaud, J. -P. Chante and M. -L. Locatelli: Mater. Sci. Forum Vol. 457-460 (2004), p.1133.

3. M.H. Hong, A.V. Samant and P. Pirouz: Phil. Mag. A Vol. 80 (2000), p.919.

4. H. Kong, J.T. Glass, R.F. Davis: U.S. Patent 4. 912. 064, filed Oct. 26, (1987).

5. O. Ueda: J. Electrochem Soc. Vol. 135 (1988), p. 11C.

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stacking faults in 4H–SiC epilayers and IGBTs;Materials Science in Semiconductor Processing;2024-07

2. Reliability and Standardization for SiC Power Devices;Materials Science Forum;2023-06-06

3. SiC and GaN Power Devices;More-than-Moore Devices and Integration for Semiconductors;2023

4. Applications of Raman, IR, and CL Spectroscopy;Advanced Optical Spectroscopy Techniques for Semiconductors;2023

5. Dislocations in 4H silicon carbide;Journal of Physics D: Applied Physics;2022-09-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3