Affiliation:
1. SINTEF
2. SINTEF Materials Technology
Abstract
Multi-crystalline silicon ingot casting using directional crystallisation is the most costeffective technique for the production of Si for the photovoltaic industry. Non-uniform cooling conditions and a non-planarity of the solidification front result, however, in the build-up of stresses and viscoplastic deformation. Known defects, such as dislocations and residual stresses, can then occur and reduce the quality of the produced material. Numerical simulation, combined with experimental investigation, is therefore a key tool for understanding the crystallisation process, and optimizing it. The purpose of the present work is to present an experimental furnace for directional crystallisation of silicon, and its analysis by means of numerical simulation. The complete casting procedure, i.e., including both the crystallisation phase and the subsequent ingot cooling, is simulated. The thermal field has been computed by a CFD tool, taking into account important phenomena such as radiation and convection in the melt. The transient thermal field is used as input for a thermo-elasto-viscoplastic model for the analysis of stress build-up and viscoplastic deformation during the process. Numerical analysis is employed to identify process phases where further optimisation is needed in order to reduce generated defects.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Reference13 articles.
1. T. Rettelbach, D. Franke, and A. Müller. In Proceedings of the 17th European Photovoltaic Solar Energy conference, pages 1834-1837. Germany, (2001).
2. D. Franke, T. Rettelbach, C. Häßler, W. Koch, and A. Müller. Solar Energy Materials & Solar Cells, 72: 83-72, (2002).
3. I. Steinbach, M. Apel, T. Rettelbach, and D. Franke. Solar Energy Materials and Solar Cells, 72: 59-68, (2002).
4. E.A. Meese, E.J. Øvrelid, H. Laux, and M. M'Hamdi. Modelling of directional crystallization of silicon ingots - heat transfer and experimental validation. In Proceeding of the 19th European Photovoltaic Solar Energy Conference and Exhibition, number 2CV. 1. 46, (2004).
5. U. Keppler. Z. Metallkde, 79: 157-158, (1988).
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献