Comparison of the Thermal Cycling Performance of Thermal Barrier Coatings under Isothermal and Heat Flux Conditions

Author:

Fry A. Tony1,Banks Jim P.1,Nunn John1,Brown Louise.J.1

Affiliation:

1. National Physical Laboratory

Abstract

Ceramic Thermal Barrier Coatings (TBCs) have been developed for advanced gas turbine engine components to improve the engine efficiency and reliability. The integrity and reliability of these coatings is of paramount importance. Accurate prediction of service lifetimes for these components relies upon many factors, and is not straightforward as knowledge of the service conditions and accurate input data for modelling are required. The main cause of failure of coatings is through debonding which develops as a consequence of thermally induced strains between the metallic bondcoat and the alumina TGO layers due to the differences in the thermal expansion coefficients of the individual layers. Thermal transients due to the power cycles of turbines will then cause these fractures to grow between the TGO and the bondcoat. When these fractures reach a critical size they can grow rapidly and cause the TBC to spall off. Thermal cycling of TBCs is used therefore to evaluate and rank TBC performance. Within the laboratory this is often conducted under isothermal conditions. Whilst this test method has performed adequately in the past it does not fully simulate service conditions. Work has been underway therefore to develop a more complex test method, which better simulates the service conditions experienced by the TBC. The approach here employs a gas torch to heat the operating face of the TBC whilst cooling the rear of the substrate with compressed air, thereby imparting a heat flux on the specimen. The specimen is then cycled by removing the gas torch and cooling with compressed air on the front and rear faces. Tests have been conducted on a TBC system consisting of an IN738 substrate with a CN334 bondcoat and EBPVD TBC. Thermal cycling tests have been performed under both isothermal and heat flux conditions. During the course of the tests the samples were examined non-destructively using a thermal camera to identify early indications of spallation. This paper reports on the performance of the flame rig equipment and the results from the exposures on the TBC system.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3