Spontaneous and Biomimetic Apatite Formation on Pure Magnesium

Author:

Cortés-Hernández Dora A.1,López Haydée Y.1,Mantovani D.2

Affiliation:

1. Unidad Saltillo-CINVESTAV

2. Laval University and University Hospital Research Centre

Abstract

In order to decrease its degradation rate, pure magnesium was subjected to the following treatments: (1) heat treatment at 345oC for 15 min and (2) heat treatment at 380°C for 30 min followed by hot rolling at 350°C. The treated samples and non-treated controls were immersed in simulated body fluid (SBF) at 37oC for different periods of time. In all cases, the magnesium released into the SBF, the weight loss of the specimens and the pH of SBF increased with time of immersion. The hot-rolled samples showed a lower degradation rate and lower pH values. A lower increase of magnesium concentration in the SBF corresponding to the hot-rolled samples was also observed. The main and unexpected positive finding of this work was that in all cases, a layer of Ca, P-rich was formed on the substrates after only 3 days of immersion in SBF. This indicates that metallic magnesium is a potential bioactive material. In the aim to promote the formation of a thicker bioactive layer than the one observed on the samples immersed in single SBF, hot-rolled magnesium was biomimetically-treated using wollastonite ceramics, SBF and a more concentrated solution (1.5 SBF). A homogeneous and dense bone-like apatite layer was observed on the biomimetically-treated samples.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3