Microstructural Development in Bearing Steel during Rolling Contact Fatigue

Author:

Mitamura N.1,Hidaka H.1,Takaki Setsuo2

Affiliation:

1. NSK Ltd.

2. Kyushu University

Abstract

It is well known that microstructural changes occur in a steel bearing, when the bearing is operated under conditions involving high cyclic stresses. When combined with relatively high temperatures, such microstructural changes result in the flaking of the bearing raceway. In this paper, microstructural changes that occurred during rolling contact fatigue were investigated, and the relationship between these changes and fatigue life are discussed in association with the recrystallization behavior of martensite. Conventional bearing steel SUJ2 (SAE52100) was subjected to partial solution treatment at 1133K for 2.4ks followed by oil quenching. The quenched material with a martensitic structure was tempered at 443K for 7.2ks, and then subjected to rolling contact fatigue testing. The testing was performed at temperatures ranging from 373K to 443K and surface pressures of 4.6GPa or 5.5GPa. During testing at 373K, flaking occurred from the surface of the raceway due to non-metallic inclusion and without any marked microstructural changes. On the other hand, in the case of testing at 403K or more, flaking occurs after obvious microstructural changes. Firstly, dark etching constituent (DEC) formed around the area of maximum shear stress, which was followed by the formation of white etching constituent (WEC) within the DEC at 80 and 30 degrees to the rolling direction. TEM observations showed the change from martensite lath to dislocation cell structure within the DEC, and also the existence of fine ferrite grains of 20nm through 100nm within the WEC. Arrhenius plots for the fatigue life indicated that the activation energy of the fatigue process corresponded to that of carbon diffusion in bcc ferrite. These results suggest that rolling contact fatigue originated from the WEC is controlled by the diffusion of carbon in the ferrite matrix.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference13 articles.

1. K. Furumura et al.: ASTM SPT 1327(1998)p.249.

2. Y. Murakami: NSK Technical Journal, No. 15(2003)p.10.

3. K. Sugino et al.: Trans ISIJ, No. 10(1970)p.98.

4. H. Swahn et al.: Metallurgical Trans. A, Vol. 7A(1976)p.1099.

5. Metals data book (Jpn. Inst. Met. ) Fig. 9 Activation energy of rolling contact fatigue life originated form WEC at different applied load Maximum Hertzian pressure, Pmax /GPa Activation Energy, Q/kJmol-1.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3