Devitrification and High Temperature Properties of Mineral Wool

Author:

Nielsen Eva Ravn1,Augustesen Maria2,Ståhl Kenny2

Affiliation:

1. Rockwool International A/S

2. Technical University of Denmark

Abstract

Mineral wool products can be used for thermal and acoustic insulation as well as for fire protection. The high temperature properties and the crystallization behaviour (devitrification) of the amorphous fibres during heating have been examined. Commercial stone wool and commercial hybrid wool (stone wool produced by a glass wool process) have been compared, as well as specially produced stone wool fibres. The fibres differed in chemical compositions and degree of oxidation given by Fe3+/Fetotal ratios. The materials were studied by thermal stability tests, X-ray diffraction, Mössbauer spectroscopy, secondary neutral mass spectroscopy, differential scanning calorimetry and thermal gravimetric analysis. When stone wool fibres were heated at 800 °C in air, oxidation of Fe2+ to Fe3+ occurred simultaneously with migration of divalent cations (especially Mg2+) to the surface. Decreasing Fe3+/Fetotal ratios resulted in increasing migration and improved thermal stability. The cations formed a surface layer mainly consisting of MgO. When heated to above 800 °C, bulk crystallization of the fibres took place with diopside and nepheline as the main crystalline phases. Commercial stone wool and the specially made fibres were considerably more temperature stable than the commercial hybrid wool. Commercial hybrid wool has a high Fe3+/Fetotal ratio of 65% resulting in less migration of cations during heat treatment.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3