Absence of Dislocation Motion in 3C-SiC pn Diodes under Forward Bias

Author:

Speer Kevin M.1,Spry David J.2,Trunek Andrew J.3,Neudeck Philip G.2,Crimp M.A.4,Hile J.T.4,Burda C.5,Pirouz P.5

Affiliation:

1. SemiSouth Laboratories, Inc

2. NASA Glenn Research Center (GRS)

3. OAI, Ohio Aerospace Institute

4. Michigan State University

5. Case Western Reserve University

Abstract

pn diodes have recently been fabricated from 3C-SiC material heteroepitaxially grown atop on-axis 4H-SiC mesa substrate arrays [1,2]. Using an optical emission microscope (OEM), we have investigated these diodes under forward bias, particularly including defective 3C-SiC films with in-grown stacking faults (SFs) nucleated on 4H-SiC mesas with steps from screw dislocations. Bright linear features are observed along <110> directions in electroluminescence (EL) images. These features have been further investigated using electron channeling contrast imaging (ECCI) [3]. The general characteristics of the ECCI images—together with the bright to dark contrast reversal with variations of the excitation error—strongly suggest that the bright linear features are partial dislocations bounding triangular SFs in the 3C-SiC films. However, unlike partial dislocations in 4H-SiC diodes whose recombination-enhanced dislocation motion serves to expand SF regions, all the partial dislocations we observed during the electrical stressing were immobile across a wide range of current injection levels (1 to 1000 A/cm2).

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3