Affiliation:
1. Max-Planck-Institut für Eisenforschung (MPIE)
2. VOESTALPINE Stahl GmbH
3. Fronius GmbH
4. Helmholtz-Zentrum Berlin für Materialien und Energie
Abstract
Recently a new welding technique, the so-called ‘Cold Metal Transfer’ (CMT) technique
was introduced, which due to integrated wire feeding leads to lower heat input and higher
productivity compared to other gas metal arc (GMA) techniques. Here microstructure formation and
residual stress state in dissimilar steel to aluminum CMT welds are investigated. The intermetallic
phase seam between the filler and the steel is only a few micrometers thick. Residual stress analyses
reveal the formation of the typical residual stress state of a weld without phase transformation. Both
in longitudinal and in transversal direction compressive residual stresses exist in the steel plate
parent material, tensile residual stresses are present in the heat affected zone of the steel and the
aluminum alloy. The area containing tensile residual stresses is larger in the aluminum alloy due to
its higher heat conductivity than in the steel. Due to the symmetry in the patented voestalpine
welding geometry and the welding from bottom and face side of the weld, the residual stress
distributions at the top and at the bottom side of the weld are very similar.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献