Influence of Important Nanoemulsions pH on Performance of Nanostructures Catalysts for H2 Production in Syngas Reactions

Author:

Fakhroueian Zahra1,Esmaeilzadeh Pouriya2,Afroukhteh Langroudi N.3,Varmazyar H.4,Ahmadirad M.5,Zadeh Pouyan Esmaeil6,Yousefi M.3,Karami M.3,Shafiekhani A.5,Sepehriseresht S.7

Affiliation:

1. University of Tehran

2. Iran University of Science and Technology (IUST)

3. Iran Polymer and Petrochemical Institute (IPPI)

4. Instrumental Analysis University

5. Center (IPM)

6. University Putra Malaysia

7. Tehran Heart Center

Abstract

The synthesis of nanostructures are very various, and the most of scientists always fabricate them by the coprecipitation method at pH = 10.5-11. If we prepare these nanocatalysts for partial oxidation of methane (POM), processes to transforme methane gas into hydrogen or synthesis gas (H2 + CO) for obtaining exact green fuel H2 gas at different pH, what will be occurring?, and what is the influence of pH on nanoemulsion, nanofluids, nanostructures, and finally the application in syngas process? In this study we prepared many different nanoparticles containing % x (w/w) Co, Ni, Ru and La oxides over the various supports e.g. Ce-ZrO2, MgO-CeO2, AlCeO2, SiO2, SiAl2O3, SiMgO, SiO2Al-MCM-41 nano mixed oxides sized (1-2 nm) at various pH (7, 8, 9, 11) by new coprecipitation and combine with nanofluids method using different direct agent surfactant, stabilizer, binder, alcohol solvent, dispersant and variable chemical pH controllers. The prepared nanostructures were characterized by common techniques such as SEM, TEM, XRD, Raman, FTIR, BET and TPR analysis at various pH. Also many marvellous and new mixture of nanotubes-nanoclay and nanotubes-nanocomposites with high % H2 selectivity and methane conversion were fabricated by CuOx and NiOx sputtering test followed coprecipitation method at pH 9, for POM reactions used in petrochemical industry for the first time.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3