On the Nuances in the Power Law Description and Interpretation of High Homologous Temperature Creep and Superplasticity Data

Author:

Padmanabhan K. Anantha1,Balasivanandha Prabu S.2,Abbas Ali A. Arsath2

Affiliation:

1. Tata Consultancy Services (TCS) & Research Adviso

2. Anna University

Abstract

“Power law’’ representation is used to describe minimum creep rate and “steady state” superplastic deformation. In creep isothermal log stress – log strain rate relationship is linear for so long as the rate controlling mechanism remains unchanged. During optimal superplastic flow the slope of this curve changes even when there is no change in the rate controlling mechanism, i.e. the stress exponent, n, at a constant temperature and grain size is a function of strain rate. For a constant rate controlling mechanism, in both the phenomena, n decreases with increasing temperature. Grain size has no effect on creep, but its effect is significant in superplasticity. Therefore, analyzing creep and superplasticity data by treating n for any given mechanism as a constant independent of stress and temperature is questionable. In this analysis stress is normalized with respect to a reference stress, rather than the shear modulus. The microstructure dependence comes through the Buckingham Pi theorem. When contribution from microstructure terms to isothermal strain rate is constant, Laurent’s theorem helps generate a set of values for n. It is shown that the simplest solution, viz. n is independent of stress, but is a linear function of temperature, describes steady state creep. (The case n is independent of both stress and temperature follows as a special case.) The second simplest solution, viz. n is a linear function of both temperature and stress corresponds to steady state superplasticity. Using the equations, the values of n, activation energies for the rate controlling processes and strain rates at different temperatures and stresses could be estimated for both creep and superplasticity. The analysis is validated using experimental results concerning many systems. iiThis lecture is dedicated to the sacred memory of late Prof. Oleg D. Sherby.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3