Mesoscopic Scale Modeling of "Superplastic" Flow in Geological and Glacial Materials

Author:

Basariya M. Ravithul1,Padmanabhan K. Anantha2

Affiliation:

1. Anna University

2. University of Hyderabad

Abstract

A viewpoint that suggests that grain/ interphase boundary sliding (GBS) that develops to a mesoscopic scale (“cooperative boundary sliding”) controls optimal superplastic (SP) deformation is able to explain superplasticity in metals and alloys, ceramics, intermetallics, composites and bulk metallic glasses of grain sizes ranging from a few microns down to a few nanometers. It is extended here to describe grain-size-sensitive (GSS) flow in minerals, rocks and ice within narrow experimental ranges. In this approach the accommodation processes of grain boundary diffusion, dislocation emission from sliding boundaries and/ or grain rotation accompanying boundary sliding are present overextremely short distancesand are assumed to be faster than GBS. Analysis shows that GSS creep in geological and glacial materials can be accounted for in terms of four “universal”, mesoscopic scale constants of average values, = 0.197, = 0.415 J.m-2, = 8.9 and = 0.166, where is the average shear strain associated with a basic boundary sliding event at the level of the atomistics, is the specific grain boundary energy (assumed to be isotropic), is the number of boundaries that align to form a mesoscopic boundary glide plane and “” is a constant that obeys the condition 0<a<0.5, whose magnitude depends on grain shape and size distribution in the material. It is demonstrated that with the help of these four constants and the Frost-Ashby equations for estimating the shear modulus, it is possible to predict steady state GSS creep flow in any geological or glacial material, including those whose mechanical response was not used to obtain the “universal” constants. Whether these observations are evidence for “superplasticity” in these materials can be known only if the findings are reproduced in tensile deformation also.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3