Density Functional Theory Study of Kink with P in BCC Iron

Author:

Chen Li Qun1,Yu Tao2,Qiu Zheng Chen1

Affiliation:

1. Central South University of Forestry and Technology

2. China Iron and Steel Research Institute Group

Abstract

The optimal geometries and mechanical properties of a kink with P are studied by applying density functional theory to the ½[111](1¯10) edge dislocation in bcc iron. The calculated impurity segregation energy shows that the P atom can be potentially trapped by the kink, and the doping P preferably segregates to the core region of the ½[111](1¯10) edge dislocation rather than to the <100>(010) edge dislocation. The analysis of the electronic structure indicates that the sideward motion of the kink is impeded owing to strong a interaction between P and neighboring Fe atoms. That is, the P induces a pinning effect on the ½[111](1¯10) edge dislocation. The hybridizations between P and Fe come from P 3p and Fe 3d4s4p. The p and d states have an obvious orientation, which may not be favorable to the toughness of iron. The localized effect of the P-kink complex distinctly affects the electronic structure as well as the energy of the system.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3