Lattice Boltzmann Equations-Based Model of the Convection Melt Flow Driven by the Combined Effects of Buoyancy, Surface Tension and Magnetic Body Forces with Heat Generation

Author:

Mechighel F.1,Aoua S. Ben1,Dost S.2

Affiliation:

1. University of Annaba

2. University of Victoria

Abstract

The main topic of this paper is the development of a mathematical model, based on the Lattice Boltzmann equations (LBE), which is proposed for the simulation of the complex convective flow, held in an electrically conducting melt, driven by the combined action of buoyancy, surface-tension, and electromagnetic forces. The lattice Boltzmann method (LBM) is relatively novel and contrasts with the usual well-known methods to physical modeling in the domain of computational fluid dynamics (CFD). Indeed, the LBM describes the fluid (i.e. lattice fluid) at a microscopic level (molecular) and proposes models for the collision between molecules. The full continuum-level physics (i.e. the macroscopic hydrodynamic fields) is implicitly contained in the LB model. Indeed those macroscopic quantities are defined as moments of the so-called particle distribution functions. In the present work, a two-dimensions (2D) LBE-based model is developed to the simulation of convection melt flow driven by the combination of natural buoyancy, surface tension, and electromagnetic forces. The model is applied to numerical modeling of the problems of buoyancy, surface-tension, and electromagnetic driven convection melt flow in an enclosure. The melt system used has a low Prandtl number, which is appropriate to crystal growth melts.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

Reference47 articles.

1. Dost, S.; Lent, B. (2007): Single Crystal Growth of Semiconductors from Metallic Solutions. (Elsevier, Amsterdam, the Netherlands 2007).

2. Mechighel, F. (2013): Modélisation de la convection lors d'un changement de phase : Stabilisation par champ magnétique, ISBN 978-3-8381-7977-3, (ed. Morel P.) (Presses Académiques Francophones PAF,, Saarbrücken, Germany).

3. Kuhlmann, H.C. (1999): Thermocapillary Convection in Models of Crystal Growth. (Springer-Verlag, New York).

4. Kawamura, H.; Ueno, I. (2006).

5. Hossain, M.A.; Hafiz, M.Z.; Rees, D.A.S. (2005): Buoyancy and thermocapillary driven convection flow of an electrically conducting fluid in an enclosure with heat generation, International Journal of Thermal Sciences, vol. 44, p.676–684.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3