Affiliation:
1. Russian Academy of Sciences
2. National Research Technological University MISiS
3. Karlsruhe Institute for Technology (KIT)
4. A.A. Baikov Institute of Metallurgy and Materials Science
5. Indian Institute of Technology
Abstract
The microstructure, phase composition, Mössbauer spectra, grain boundary segregation and magnetic properties of binary Fe–C alloys with carbon concentration of 0.05, 0.10, 0.20, 0.25, 0.45, 0.60, 1.3, 1.5 and 1.7 wt. % were studied in the as-cast state, after a long annealing at 725°C and after high-pressure torsion (HPT) at the ambient temperature and 5 GPa with 5 anvil rotations (shear strain about 6). The grain size after HPT was in the nanometer range. Only Fe3C (cementite) and -Fe remain in the alloys after HPT. It was also shown that the less stable Hägg carbide (Fe5C2) and retained austenite disappear, and phase composition closely approaches the equilibrium corresponding to the HPT temperature and pressure. Measurements of saturation magnetization and Mössbauer effect reveal that the amount of cementite decreases after HPT. The reason for partial cementite dissolution is the formation of the carbon-rich segregation layers in the ferrite grain boundaries.
Publisher
Trans Tech Publications, Ltd.
Subject
Condensed Matter Physics,General Materials Science,Radiation
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献