Cellulase Production under Solid State Fermentation in Cashew Apple Bagasse by Trichoderma reesei LCB 48

Author:

da Silva Lins Simone Aparecida1,de Sousa Conrado Líbia1

Affiliation:

1. Federal University of Campina Grande

Abstract

Cellulases, among many enzymes, have been highlighted in several areas of expertise, such as food, textiles, pulp and paper and wastewater treatment of effluents and residues. There is also the challenge of producing biofuels, where currently cellulases have been widely applied in the production of cellulosic ethanol, where it is used during the stage of hydrolysis of lignocellulosic biomass for conversion of cellulose to glucose. Studies have been developed in order to produce this enzyme through a process of solid state fermentation from lignocellulosic agroindustrial wastes, thus reducing the cost of enzyme production, and adding value to the residue. The aim of this work was to produce cellulases from the stalk of the cashew bagasse using Trichoderma reesei LCB 48. The study of the cellulase production was performed using 22 factorial design with central point in quadruplicate. The washed stalk of the cashew bagasse inoculated with T. reesei was evaluated for the production of cellulases with initial moisture contents of 45, 55 and 65% and in the presence of inorganic nitrogen ((NH4)2SO4) at concentrations 0.5, 0.75 and 1%. The fermentation was developed over 238 hours, and during this period the parameters analyzed were pH, moisture, AR and enzyme activity expressed in CMCase. Peak production of cellulase enzyme expressed in CMCase was achieved with 238 hours which value was 0.71 U/g (0.095 U/mL), under the conditions of 45% initial moisture content and 1% of nitrogen source. This activity was obtained in only one stage of the biotechnological process, the solid state fermentation; the next ones are concentration and purification. The using of experimental design methodology allowed us to observe the initial substrate moisture is the determining variable in the production of enzymes CMCases, and the minimum moisture level (45%) showed the highest production values of CMCase.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mitigation of environment crisis: conversion of organic plant waste to valuable products;Valorization of Wastes for Sustainable Development;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3