Solution of Fourth Order Diffusion Equations and Analysis Using the Second Moment

Author:

Lugon Junior Jader1,Vasconcellos João Flávio Vieira2,Knupp Diego Campos2,Marinho Gisele Moraes2,Bevilacqua Luiz3,da Silva Neto Antônio José2

Affiliation:

1. Instituto Federal Fluminense

2. Universidade do Estado do Rio de Janeiro IPRJ/UERJ

3. Universidade Federal do Rio de Janeiro

Abstract

The classical concept of diffusion characterized by Fick’s law is well suited for describing a wide class of practical problems of interest. Nevertheless, it has been observed that it is not enough to properly represent other relevant applications of practical interest. When in a system of particles their spreading is slower or faster than predicted by the classical diffusion model, such a phenomenon is referred to as anomalous diffusion. Time fractional, space fractional and even space-time fractional equations are widely used to model phenomena such as solute transport in porous media, financial modelling and cancer tumor behavior. Considering the effects of partial and temporary retention in dispersion processes a new analytical formulation was derived to simulate anomalous diffusion. The new approach leads to a fourth-order partial differential equation (PDE) and assumes the existence of two concomitant fluxes. This work investigates the behavior of the bi-flux approach in one dimensional (1D) medium evaluating the mean square displacement for different cases in order to classify the diffusion process in normal, sub-diffusive or super-diffusive.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

Reference31 articles.

1. A. Fick, Uber diffusion, Ann. Pys. 170 n. 1 (1855) 59–86.

2. J. Klafter, I. M. Sokolov, Anomalous diffusion spreads its wings, Physics World, 18 n. 8, (2005) 29–32.

3. C. Nicholson, E. Syková, Extracellular space structure revealed by diffusion analysis, Trends in Neuroscience, 21 (1998) 207–215.

4. L. A. Richards, Cappilary conduction of liquids through porous mediums. Physics, 1 n. 5 (1931) 318–333.

5. Benson DA, The fractional advection-dispersion equation: development and applications, Ph.D. thesis, University of Nevada, USA (1998).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3