Prediction of Mechanical Properties of Coiled Carbon Nanotubes by Molecular Structural Mechanics Based Finite Element Modelling

Author:

Azzaz Hamza1,Dahmoun Djaffar1,Chaterbache O.1,Azzaz Mohammed1

Affiliation:

1. USTHB

Abstract

Carbon nanotubes (NTC) have very spectacular mechanical properties related to their nanometric structure, their perfect arrangement and their one-dimensional geometry. As with all materials, structural defects are inevitable and affects NTC properties. Among these defects, we distinguish the topological defects, the dislocations and the penta-hepta defect. But the presence of these defects is not totally harmful, because the existence of some structure like the coiled nanotube is the result of these defects. For this, in the first part of this work, the coiled carbon nanotube structure is studied, a method for the designing of this structure is proposed, the geometric parameters are detailed and the structural coefficients are determined. Therefore, a procedure for moving from a graphene sheet to a coiled nanotube is developed. Then, the second part of this study represents an attempt to calculate the spring constants of the spiral carbon nanotube. Mechanical properties of this material are investigated by means of molecular structural mechanics (MSM) method in ANSYS finite element code. The model serves as a link between the computational chemistry and the solid mechanics by substituting discrete molecular structures, with an equivalent-structural model. A coiled carbon nanotube has been modeled on the nanoscale by one-dimensional elements (3D beam). The results show a considerable influence of structural parameters (diameter, chirality, pitch and defect position) on the coiled nanotube mechanical properties.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3