Electroluminescence in Organically Capped Cd1-xZnxSe Chalcogenide Nanocrystals

Author:

Gautam Nitendra Kumar1,Ramrakhiani Meera1,Kuraria R.K.2,Kuraria S.R.2

Affiliation:

1. Rani Durgawati University

2. Government Model Science College Jabalpur (MP)

Abstract

Currently there is a great interest in II–VI semiconductor nanoparticles, particularly organically capped soluble particles of cadmium or zinc sulphide and selenide, for their ready to use application in devices. For electroluminescence (EL) devices, it is expected to cover a broad spectrum and to tune various specific colours by preparing Cd1-xZnx Se instead of CdSe and ZnSe. Ternary alloys have composition dependent properties; therefore Cd1-xZnxSe has attracted much attention in the fields of luminescence and optoelectronic devices. It has wide optical band-gap and good stability with respect to environment. In this study, Cd1-xZnxSenanoparticles have been synthesized by using starch as a capping agent through a chemical synthesis route at room temperature. Samples have been prepared varying composition factor ‘x’ in ternary alloy Cd1-xZnxSe. Cubic structure of all has been confirmed by XRD. Crystallite size calculated from XRD was found in the range of 3-5 nm and it was observed that size reduces on increasing Zn content in ternary compound. Optical absorption spectra showed the blue shift in absorption edge with increasing Zn content. Band gap has been obtained by absorption studies and increase in band gap observed on increasing Zn content in the compound. Electroluminescence studies reveal that lower threshold voltage is required for samples with lower ‘x’ value. The Brightness increases on increasing the voltage above threshold voltage and the variation pattern is almost exponential for all samples. The voltage-current curve represents ohmic nature of the EL cell. Impedance was found to increase on increasing ‘x’ value. The increase in EL intensity is faster for higher frequency. EL spectra revealed that light emission is in violet-green region corresponding to band gap for both Cd0.75 Zn 0.25Se and Cd0.5 Zn 0.5Se, with a slight blue shift on increasing Zn content. A ternary system Cd1–xZnxSe, may be engineered better for application purpose by suitably choosing the composition parameter ‘x’.Contents of Paper

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3