Modeling Present Worth of Product Quality Loss of STB Characteristic Based on Service Life Distribution

Author:

Zhao Yan Ming1,Liu De Shun1,Wen Ze Jun1,Liu Ting2

Affiliation:

1. Hunan University of Science and Technology

2. Hunan University of Science and Technolog

Abstract

The product smaller-the-better (STB) quality characteristics are continually changing and out of specification limits because of the constant stress, wear and others after the product is put into use, which will cause loss because of the product rejected and scrapped. On the basis of the quality viewpoint that product quality loss is present worth of a loss caused as a result of its quality characteristics because its quality characteristic is out of specification and lead to product scrap after the product is put into service, the paper establishes the present worth model of quality loss of STB characteristic based on service life distribution, and proposes the calculation method on the probability density function (PDF) of the product service life based on the technical specifications of STB quality characteristic. It takes the concentricity between the inner cylindrical surface and the outer cylindrical surface of the link bushing as an example to analysis the various factors that impact on the present worth of concentricity quality loss in the new model, and contrast with Taguchi quality loss model. The results show that the new model describes an actual loss that a product imparts to society after the product is put into service, and can reflect the quality loss of STB characteristic in the product service process, and is more realistic than Taguchi quality loss model of STB. The new model extends tolerance design of STB characteristic from the manufacturing stage to the service stage.

Publisher

Trans Tech Publications, Ltd.

Reference7 articles.

1. Taguchi G, Elsayed E A, Hsiang T C: Quality engineering in production system(McGraw2Hill, New York 1989).

2. Boping Wang, Hui Zhang, Daying Jing: Transactions of the Chinese Society for Agricultural Machinery, Vol. 38(2) (2007), p.150.

3. Yueyi Zhang, Mingshun Song, Zhijun Han, Xianglai Chen: Industrial Engineering Journal, Vol. 14(6) (2011) , p.81.

4. Jiandong Shang, Kangning Chen: Journal of machine design, Vol. 17(4) (2000), p.1.

5. A. Teran, D. B. Pratt, K. E. Case: the Engineering Economist, Vol. 42(1) (1996), p.39.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3