Short-Term Forecast of Blast Furnace Gas Production Amount Based on Grey RBF Neural Network

Author:

Lv Zhi Min1,Wang Zhao1,Wang Zi Yang1

Affiliation:

1. University of Science and Technology

Abstract

Dynamic optimization scheduling of the gas in iron and steel enterprises has great significance to reduce gas emission and the short-term forecast is the premise to realize the energy dynamic scheduling. Based on the characteristics that the influencing factors of blast furnace gas amount are complex and difficult to collect, a grey radial basis function (RBF) neural network forecast model is proposed to predict the gas amount for blast furnace in this paper. Combining grey theory, which is used to preprocess the historical data and obtain abundant information, with RBF neural network makes the effective trend forecast in the next 30 minutes come true. The model proposed in this paper is proved to be more accurate according to control experiments against the grey BP neural network.

Publisher

Trans Tech Publications, Ltd.

Reference12 articles.

1. Al-Ghandoor, A, Jaber, J. O., Al-Hinti, I. , Mansour, I. M. , 2009. Residential past and future energy consumption: potential savings and environmental impact [J]. Renewable and Sustainable Energy Reviews 13, 1262-1274.

2. Akimoto, K. Sannomiya, N. Nishikawa. Y. &Tsuda, T. An optimal gas supply for a power plant using a mixed integer programming model [J]. Automatica, 1996, 27(3): 513-518.

3. Lady, G. M. Evaluating long term forecasts [J]. Energy Economics 2010(32): 450-457.

4. Yu Liu. Blast furnace gas recycling method in iron and steel industry [J]. 2009: Beijing, China. Techniques of Automation and Applications, 2005, 24(9): 4-6.

5. Dong Qiu, Shuang Chen, Lihong Zhu. Blast furnace gas balance and comprehensive optimization in iron and steel enterprises [J]. Computer Technology and Development, 2009(3): 55-60.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3