Cement Bonded Sol-Gel TiO2 Powder Photocatalysis for Phenol Removal

Author:

Hafizah Nor1,Sopyan Iis1

Affiliation:

1. International Islamic University Malaysia

Abstract

Photocatalysis has been proven effective in controlling various environmental problems originated by pollutions both in liquid and gaseous phases. Titanium dioxide (TiO2) is well known the most practical photocatalyst as it has high photocatalytic efficiency, low band gap energy, and no toxicity. Various chemical methods have been tried to produce TiO2 photocatalyst powder with high activity. In this study, sol-gel method has been employed to produce nanosized TiO2 photocatalyst particles and its physical properties and photocatalytic activity in phenol degradation test were compared with the commercial TiO2 powder, Degussa P25. The synthesis process was carried out through hydrolysis of titanium tetraisopropoxide (TPT) and methanol where the molar ratio of water to TPT was monitored to control the hydrolysis rate. From X-Ray Diffraction (XRD) analysis, the sol-gel TiO2 powder obtained was fully in anatase structure with high crystallinity. Scanning Electron Microscope (SEM) measurement showed that the powder was in nanoto sub-micron size, spherical in shape, and tightly agglomerated. Thermal analysis confirmed that sol-gel derived amorphous TiO2 powder transformed to anatase phase after 400°C calcination. The test on photocatalytic performance conducted using aqueous solution of phenol as the representative of water pollutant examined in this study showed that the sol-gel TiO2 powder is more efficient in degrading phenol compared to one of the most active photocatalysts commercially available, Degussa P25.

Publisher

Trans Tech Publications, Ltd.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3