Comparison between SAC405 Lead-Free Solders and EN(P)EPIG and EN(B)EPIG Surface Finishes

Author:

Saliza Azlina Osman1,Ourdjini Ali2,Ibrahim Mohd Halim Irwan1

Affiliation:

1. Universiti Tun Hussein Onn Malaysia

2. Universiti Teknologi Malaysia

Abstract

In electronics industries, most of them had to shifted their solder materials from leaded solders into lead-free solders due to the environmental concerns and follow the legislation of Restriction of use Hazardous Substances (RoHS). Thus, Sn-Ag-Cu solder is one of the choices that can replace the leaded solder and also offer better properties. This study investigates the comparison between Sn-4.0Ag-0.5Cu (SAC405) and EN(P)EPIG and EN(B)EPIG surface finishes. Reliability of solder joint has been assessed by performing solid state isothermal aging at 150oC for 250 up to 2000 hours. After reflow soldering process, (Cu,Ni)6Sn5intermetallic compound (IMC) is dominated at near centre of solder meanwhile (Ni,Cu)3Sn4IMC is dominated at near outside of solder ball.Moreover, aging time resulted in an increase in thickness and changed the morphology into more spherical, dense and large grain size. Analysis by optical microscope revealed that the IMC thickness of EN(B)EPIG produced thicker IMC compared to EN(P)EPIG surface finish during reflow as well as isothermal aging.

Publisher

Trans Tech Publications, Ltd.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3