A Novel and Practical Method for Network Security Situation Prediction

Author:

He Gao Feng1,Zhang Tao1,Ma Yuan Yuan1,Guan Xiao Juan1

Affiliation:

1. China Electric Power Research Institute

Abstract

The real-time prediction of network security situation can significantly improve the monitoring and emergency response capability of the network. However, in practice, if there are a large amount of false predictions, the network administrators should become insensitive and will finally ignore all prediction results. In this paper, we try to solve this issue and propose a novel False Positive Adaptive (FPA) method for network security situation prediction. The main idea of our method is using extrainformation to reduce the number of false positives in prediction. In the model training step, we take advantage of host and network information to eliminate meaningless alerts produced by security tools such as Intrusion Detection System (IDS) and firewall, thus assuring the accuracy of the training samples. In the prediction step, we utilize the detection information from security tools to confirm the prediction results automatically. If the previous predictions are not detected, they will be considered as false positives and the prediction model will be retrained by incremental learning. In our work, the model training and incremental learning is accomplished efficiently by neural network and boosting algorithm.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3