The Validation of Weld Residual Stresses for Use in Structural Integrity Assessment

Author:

Bate Steve K.1,Bouchard P. John2

Affiliation:

1. Serco TCS Assurance

2. Open University

Abstract

The continued safe and reliable operation of plant invariably has to consider the assessment of defects in welded structural components. This requires some estimate of the residual stresses that have developed during the welding fabrication process. For as-welded structures these stresses can be of yield magnitude. Engineering critical assessment procedures such as R6, BS 7910, FITNET and API 579-1 provide simplified estimates, bounding profiles or advice on detailed analysis or measurement which can be applied to provide conservative estimates of the remaining life of plant. The use of finite element analysis (FEA) is being applied more frequently to predict residual stresses in welded components for assessment purposes. This calculation involves complex non-linear analyses with many assumptions. As a consequence, the accuracy and reliability of solutions is variable. In order to improve the consistency of weld modelling, and hence the accuracy and confidence in their use, a set of Guidelines covering the calculation of residual stresses have been developed. The residual stress calculations need to be validated before the results can be used in assessments and guidance on how to demonstrate the required standard of validation proof is provided with these Guidelines. The level of validation required, depends on the problem being solved and the sensitivity of the assessment to the presence of residual stress. For example a high level of validation may be required for assessments of safety critical plant. To support these calculations, measurements are required and a series of ‘Weld Residual Stress Benchmarks’, describing welded mock-ups which have been measured using various measurement techniques, are being collated which the users can then refer to when validating their finite element modelling techniques and thus provide a greater confidence in the predicted results.

Publisher

Trans Tech Publications, Ltd.

Reference12 articles.

1. BS7910: Guide on Methods for assessing the acceptability of flaws in metallic structures, BSi. London (2005).

2. R6 – Revision 4, Assessment of the integrity of structures containing defects, British Energy (2009).

3. FITNET Fitness-for-Service (FFS) procedure, Revision MK8 (2008).

4. API-579-1/ASME FFS-1 Fitness for Service, Second Edition, June 5, (2007).

5. P. Hurrell, C. Watson, J. Bouchard, M. Smith, R. Dennis, N. Leggatt, S. Bate and A. Warren, Development of Weld Modelling Guidelines in the UK, Proceedings of ASME PVP2009-77540, Prague, Czech Republic (2009).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3