Analysis of Convective Heat Transfer Coefficient on Shape Memory Alloy Actuatorunder Various Ambient Temperatures with Finite Difference Method

Author:

Jani Jaronie Mohd1,Huang Sunan1,Leary Martin1,Subic Aleksandar1

Affiliation:

1. RMIT University

Abstract

The demand for shape memory alloy (SMA) actuators for technical applications is steadily increasing; however SMA may have poor deactivation time due to relatively slow convective cooling. Convection heat transfer mechanism plays a critical role in the cooling process, where an increase of air circulation around the SMA actuator (i.e. forced convection) provides a significant improvement in deactivation time compared to the natural convection condition. The rate of convective heat transfer, either natural or forced, is measured by the convection heat transfer coefficient, which may be difficult to predict theoretically due to the numerous dependent variables. In this work, a study of free convective cooling of linear SMAactuators was conducted under various ambient temperatures to experimentally determine the convective heat transfer coefficient. A finite difference equation (FDE) was developed to simulate SMA response, and calibrated with the experimental data to obtain the unknown convectiveheat transfer coefficient, h. These coefficients are then compared with the available theoretical equations, and it was found that Eisakhaniet. almodel provides good agreement with the Experiment-FDE calibrated results. Therefore, FDE is reasonably useful to estimate the convective heat transfer coefficient of SMA actuator experiments under various conditions, with a few identified limitations (e.g. exclusion of other associative heat transfer factors).

Publisher

Trans Tech Publications, Ltd.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Superelasticity of Shape Memory Alloys Based on Reproducing Kernel Particle Method;International Journal of Applied Mechanics;2024-03-28

2. Shape memory alloy actuator with active cooling device and deflectable winglet application;Smart Materials and Structures;2020-09-11

3. Designing shape memory alloy linear actuators: A review;Journal of Intelligent Material Systems and Structures;2016-12-06

4. Numerical modeling of shape memory alloy linear actuator;Computational Mechanics;2015-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3